- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000000020000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Alexandrov, Boian (2)
-
Bhattarai, Manish (2)
-
Bishop, Alan (2)
-
Inan, Toki Tahmid (2)
-
Kabir, Anowarul (2)
-
Rasmussen, Kim (2)
-
Shehu, Amarda (2)
-
Usheva, Anny (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract DNA breathing dynamics—transient base-pair opening and closing due to thermal fluctuations—are vital for processes like transcription, replication, and repair. Traditional models, such as the Extended Peyrard-Bishop-Dauxois (EPBD), provide insights into these dynamics but are computationally limited for long sequences. We presentJAX-EPBD, a high-throughput Langevin molecular dynamics framework leveragingJAXfor GPU-accelerated simulations, achieving up to 30x speedup and superior scalability compared to the original C-based EPBD implementation.JAX-EPBDefficiently captures time-dependent behaviors, including bubble lifetimes and base flipping kinetics, enabling genome-scale analyses. Applying it to transcription factor (TF) binding affinity prediction using SELEX datasets, we observed consistent improvements inR2values when incorporating breathing features with sequence data. Validating on the 77-bp AAV P5 promoter,JAX-EPBDrevealed sequence-specific differences in bubble dynamics correlating with transcriptional activity. These findings establishJAX-EPBDas a powerful and scalable tool for understanding DNA breathing dynamics and their role in gene regulation and transcription factor binding.more » « lessFree, publicly-accessible full text available December 12, 2025
-
Kabir, Anowarul; Inan, Toki Tahmid; Rasmussen, Kim; Shehu, Amarda; Usheva, Anny; Bishop, Alan; Alexandrov, Boian; Bhattarai, Manish (, bioRxiv)Abstract Simulating DNA breathing dynamics, for instance Extended Peyrard-Bishop-Dauxois (EPBD) model, across the entire human genome using traditional biophysical methods like pyDNA-EPBD is computationally prohibitive due to intensive techniques such as Markov Chain Monte Carlo (MCMC) and Langevin dynamics. To overcome this limitation, we propose a deep surrogate generative model utilizing a conditional Denoising Diffusion Probabilistic Model (DDPM) trained on DNA sequence-EPBD feature pairs. This surrogate model efficiently generates high-fidelity DNA breathing features conditioned on DNA sequences, reducing computational time from months to hours–a speedup of over 1000 times. By integrating these features into the EPBDxDNABERT-2 model, we enhance the accuracy of transcription factor (TF) binding site predictions. Experiments demonstrate that the surrogate-generated features perform comparably to those obtained from the original EPBD framework, validating the model’s efficacy and fidelity. This advancement enables real-time, genome-wide analyses, significantly accelerating genomic research and offering powerful tools for disease understanding and therapeutic development.more » « lessFree, publicly-accessible full text available December 10, 2025
An official website of the United States government
